"*" indicates required fields
AI+ Engineer™
Innovate Engineering: Leverage AI-Driven Smart SolutionsThe AI+ Engineer certification program offers a structured journey through the foundational principles, advanced techniques, and practical applications of Artificial Intelligence (AI). Beginning with the Foundations of AI, participants progress through modules covering AI Architecture, Neural Networks, Large Language Models (LLMs), Generative AI, Natural Language Processing (NLP), and Transfer Learning using Hugging Face. With a focus on hands-on learning, students develop proficiency in crafting sophisticated Graphical User Interfaces (GUIs) tailored for AI solutions and gain insight into AI communication and deployment pipelines. Upon completion, graduates are equipped with a robust understanding of AI concepts and techniques, ready to tackle real-world challenges and contribute effectively to the ever-evolving field of Artificial Intelligence.
Buy Exam Bundle Download Blueprint Find a Training Partner Download Executive SummaryPrerequisites
- AI+ Data or AI Developer course should be completed.
- Basic understanding of Python Programming: Proficiency in Python is mandatory for hands-on exercises and project work.
- Basic Math: Familiarity with high school-level algebra and basic statistics.
- Computer Science Fundamentals: Understanding basic programming concepts (variables, functions, loops) and data structures (lists, dictionaries).
Modules
10
Examination
1
50 MCQs
90 Minutes
Passing Score
70%
Certification Modules
- 1.1 Introduction to AI
- 1.2 Core Concepts and Techniques in AI
- 1.3 Ethical Considerations
- 2.1 Overview of AI and its Various Applications
- 2.2 Introduction to AI Architecture
- 2.3 Understanding the AI Development Lifecycle
- 2.4 Hands-on: Setting up a Basic AI Environment
- 3.1 Basics of Neural Networks
- 3.2 Activation Functions and Their Role
- 3.3 Backpropagation and Optimization Algorithms
- 3.4 Hands-on: Building a Simple Neural Network Using a Deep Learning Framework
- 4.1 Introduction to Neural Networks in Image Processing
- 4.2 Neural Networks for Sequential Data
- 4.3 Practical Implementation of Neural Networks
- 5.1 Exploring Large Language Models
- 5.2 Popular Large Language Models
- 5.3 Practical Finetuning of Language Models
- 5.4 Hands-on: Practical Finetuning for Text Classification
- 6.1 Introduction to Generative Adversarial Networks (GANs)
- 6.2 Applications of Variational Autoencoders (VAEs)
- 6.3 Generating Realistic Data Using Generative Models
- 6.4 Hands-on: Implementing Generative Models for Image Synthesis
- 7.1 NLP in Real-world Scenarios
- 7.2 Attention Mechanisms and Practical Use of Transformers
- 7.3 In-depth Understanding of BERT for Practical NLP Tasks
- 7.4 Hands-on: Building Practical NLP Pipelines with Pretrained Models
- 8.1 Overview of Transfer Learning in AI
- 8.2 Transfer Learning Strategies and Techniques
- 8.3 Hands-on: Implementing Transfer Learning with Hugging Face Models for Various Tasks
- 9.1 Overview of GUI-based AI Applications
- 9.2 Web-based Framework
- 9.3 Desktop Application Framework
- 10.1 Communicating AI Results Effectively to Non-Technical Stakeholders
- 10.2 Building a Deployment Pipeline for AI Models
- 10.3 Developing Prototypes Based on Client Requirements
- 10.4 Hands-on: Deployment
Certification Modules
- 1.1 Introduction to AI
- 1.2 Core Concepts and Techniques in AI
- 1.3 Ethical Considerations
- 2.1 Overview of AI and its Various Applications
- 2.2 Introduction to AI Architecture
- 2.3 Understanding the AI Development Lifecycle
- 2.4 Hands-on: Setting up a Basic AI Environment
- 3.1 Basics of Neural Networks
- 3.2 Activation Functions and Their Role
- 3.3 Backpropagation and Optimization Algorithms
- 3.4 Hands-on: Building a Simple Neural Network Using a Deep Learning Framework
- 4.1 Introduction to Neural Networks in Image Processing
- 4.2 Neural Networks for Sequential Data
- 4.3 Practical Implementation of Neural Networks
- 5.1 Exploring Large Language Models
- 5.2 Popular Large Language Models
- 5.3 Practical Finetuning of Language Models
- 5.4 Hands-on: Practical Finetuning for Text Classification
- 6.1 Introduction to Generative Adversarial Networks (GANs)
- 6.2 Applications of Variational Autoencoders (VAEs)
- 6.3 Generating Realistic Data Using Generative Models
- 6.4 Hands-on: Implementing Generative Models for Image Synthesis
- 7.1 NLP in Real-world Scenarios
- 7.2 Attention Mechanisms and Practical Use of Transformers
- 7.3 In-depth Understanding of BERT for Practical NLP Tasks
- 7.4 Hands-on: Building Practical NLP Pipelines with Pretrained Models
- 8.1 Overview of Transfer Learning in AI
- 8.2 Transfer Learning Strategies and Techniques
- 8.3 Hands-on: Implementing Transfer Learning with Hugging Face Models for Various Tasks
- 9.1 Overview of GUI-based AI Applications
- 9.2 Web-based Framework
- 9.3 Desktop Application Framework
- 10.1 Communicating AI Results Effectively to Non-Technical Stakeholders
- 10.2 Building a Deployment Pipeline for AI Models
- 10.3 Developing Prototypes Based on Client Requirements
- 10.4 Hands-on: Deployment
What Will You Learn?
GUI Develop for AI Solutions
Students will learn to develop user-friendly AI GUIs. Interface design, usability testing, and AI integration into GUIs will be covered to build intuitive and engaging user experiences.
AI Communication and Deployment Pipeline
Learners will get to learn about AI solution communication and deployment. This includes developing and managing deployment pipelines for fast AI system deployment and maintenance and explain AI solutions' value and usefulness to stakeholders and end-users.
AI Problem-solving
Students will apply AI principles from the course to real-world issues to improve their skills to discover AI methodologies, construct models, and interpret results to tackle challenging problems across disciplines.
AI-specific Project Management
Learners will build AI-specific project management abilities by engaging with AI project workflows. This involves developing, implementing, and managing AI initiatives, managing resources, schedules, and stakeholder expectations for success.
Hear it from the Learners
Marc H
Happy to share I've completed the AI+ Executive Certification from AI CERTs! This program has sharpened my skills in strategic AI application + implementation, further equipping me to lead AI-driven organizational transformation.
Georgia L
As VP Operations, my recent completion of the AI+ Executive exam through AI CERTs was a pivotal step in advancing my AI skill set as we embrace an AI-driven future. This certification not only deepened my understanding of AI's broad impact across various divisions but also equipped me with the tools to make informed, strategic decisions.
Antonio C
AI+ Executive™ Instructor Guide Certificate. Today, I am part of the team of #CompuEducación instructors to teach the #AI CERTs AI+Executive certification course . This 8-hour course is a new standard for business leaders who want to start a solid path in the adoption of AI for the transformation of their companies. The technological, business, ethical, legal and strategy foundations are covered. The examples of using “AI” are practical, up-to-date, and touch on the different variants of “AI.”
Doug F
Excited to successfully complete AI Cert's AI+ Marketing certification course! For us marketers, it's imperative to embrace AI and take an active effort in learning how to harness its capabilities to stay relevant and be on the cutting edge of tech.
Discover Your Ideal Role-Based Certifications and Programs!
Not sure which certifications to go for? Take our quick assessment to discover the perfect role-based certifications and programs tailored just for you.