"*" indicates required fields
AI+ Architect™
Visualize Tomorrow: Neural Networks in VisionThe AI+ Architect certification offers comprehensive training in advanced neural network techniques and architectures. It covers the fundamentals of neural networks, optimization strategies, and specialized architectures for natural language processing (NLP) and computer vision. Participants will learn about model evaluation, performance metrics, and the infrastructure required for AI deployment. The course emphasizes ethical considerations and responsible AI design, alongside exploring cutting-edge generative AI models and research-based AI design methodologies. A capstone project and course review consolidate learning, ensuring participants can apply their skills effectively in real-world scenarios. This certification equips learners with the knowledge and practical experience to excel in AI architecture and development.
Buy Exam Bundle Download Blueprint Find a Training Partner Download Executive SummaryPrerequisites
- A foundational knowledge on neural networks, including their optimization and architecture for applications.
- Ability to evaluate models using various performance metrics to ensure accuracy and reliability.
- Willingness to know about AI infrastructure and deployment processes to implement and maintain AI systems effectively.
Modules
10
Examination
1
50 MCQs
90 Minutes
Passing Score
70%
Certification Modules
- 1.1 Introduction to Neural Networks
- 1.2 Neural Network Architecture
- 1.3 Hands-on: Implement a Basic Neural Network
- 2.1 Hyperparameter Tuning
- 2.2 Optimization Algorithms
- 2.3 Regularization Techniques
- 2.4 Hands-on: Hyperparameter Tuning and Optimization
- 3.1 Key NLP Concepts
- 3.2 NLP-Specific Architectures
- 3.3 Hands-on: Implementing an NLP Model
- 4.1 Key Computer Vision Concepts
- 4.2 Computer Vision-Specific Architectures
- 4.3 Hands-on: Building a Computer Vision Model
- 5.1 Model Evaluation Techniques
- 5.2 Improving Model Performance
- 5.3 Hands-on: Evaluating and Optimizing AI Models
- 6.1 Infrastructure for AI Development
- 6.2 Deployment Strategies
- 6.3 Hands-on: Deploying an AI Model
- 7.1 Ethical Considerations in AI
- 7.2 Best Practices for Responsible AI Design
- 7.3 Hands-on: Analyzing Ethical Considerations in AI
- 8.1 Overview of Generative AI Models
- 8.2 Generative AI Applications in Various Domains
- 8.3 Hands-on: Exploring Generative AI Models
- 9.1 AI Research Techniques
- 9.2 Cutting-Edge AI Design
- 9.3 Hands-on: Analyzing AI Research Papers
- 10.1 Capstone Project Presentation
- 10.2 Course Review and Future Directions
- 10.3 Hands-on: Capstone Project Development
Certification Modules
- 1.1 Introduction to Neural Networks
- 1.2 Neural Network Architecture
- 1.3 Hands-on: Implement a Basic Neural Network
- 2.1 Hyperparameter Tuning
- 2.2 Optimization Algorithms
- 2.3 Regularization Techniques
- 2.4 Hands-on: Hyperparameter Tuning and Optimization
- 3.1 Key NLP Concepts
- 3.2 NLP-Specific Architectures
- 3.3 Hands-on: Implementing an NLP Model
- 4.1 Key Computer Vision Concepts
- 4.2 Computer Vision-Specific Architectures
- 4.3 Hands-on: Building a Computer Vision Model
- 5.1 Model Evaluation Techniques
- 5.2 Improving Model Performance
- 5.3 Hands-on: Evaluating and Optimizing AI Models
- 6.1 Infrastructure for AI Development
- 6.2 Deployment Strategies
- 6.3 Hands-on: Deploying an AI Model
- 7.1 Ethical Considerations in AI
- 7.2 Best Practices for Responsible AI Design
- 7.3 Hands-on: Analyzing Ethical Considerations in AI
- 8.1 Overview of Generative AI Models
- 8.2 Generative AI Applications in Various Domains
- 8.3 Hands-on: Exploring Generative AI Models
- 9.1 AI Research Techniques
- 9.2 Cutting-Edge AI Design
- 9.3 Hands-on: Analyzing AI Research Papers
- 10.1 Capstone Project Presentation
- 10.2 Course Review and Future Directions
- 10.3 Hands-on: Capstone Project Development
What Will You Learn?
End-to-End AI Solution Development
Learners will be able to develop end-to-end AI solutions, encompassing the entire workflow from data preprocessing and model building to deployment and monitoring. This includes integrating AI models into larger systems and applications, ensuring they work seamlessly within existing infrastructures.
Neural Network Implementation
Learners will gain hands-on experience in implementing various neural network architectures from scratch using programming frameworks like TensorFlow or PyTorch. This includes creating, training, and debugging models for different applications.
AI Research and Innovation
Learners will be equipped with the ability to conduct AI research, enabling them to stay at the forefront of AI developments. This includes identifying research gaps, proposing novel solutions, and critically evaluating current AI methodologies to drive innovation in the field.
Generative AI and Research-Based AI Design
Learners will explore advanced concepts in generative AI models and engage in research-based AI design. This includes developing innovative AI solutions and understanding the latest advancements in AI research, preparing them for cutting-edge applications and further research opportunities.
Hear it from the Learners
Marc H
Happy to share I've completed the AI+ Executive Certification from AI CERTs! This program has sharpened my skills in strategic AI application + implementation, further equipping me to lead AI-driven organizational transformation.
Georgia L
As VP Operations, my recent completion of the AI+ Executive exam through AI CERTs was a pivotal step in advancing my AI skill set as we embrace an AI-driven future. This certification not only deepened my understanding of AI's broad impact across various divisions but also equipped me with the tools to make informed, strategic decisions.
Antonio C
AI+ Executive™ Instructor Guide Certificate. Today, I am part of the team of #CompuEducación instructors to teach the #AI CERTs AI+Executive certification course . This 8-hour course is a new standard for business leaders who want to start a solid path in the adoption of AI for the transformation of their companies. The technological, business, ethical, legal and strategy foundations are covered. The examples of using “AI” are practical, up-to-date, and touch on the different variants of “AI.”
Doug F
Excited to successfully complete AI Cert's AI+ Marketing certification course! For us marketers, it's imperative to embrace AI and take an active effort in learning how to harness its capabilities to stay relevant and be on the cutting edge of tech.
Discover Your Ideal Role-Based Certifications and Programs!
Not sure which certifications to go for? Take our quick assessment to discover the perfect role-based certifications and programs tailored just for you.